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Pseudomonas aeruginosa is a major life-threatening opportunistic pathogen that commonly infects immuno-
compromised patients. This bacterium owes its success as a pathogen largely to its metabolic versatility and
flexibility. A thorough understanding of P. aeruginosa’s metabolism is thus pivotal for the design of effective
intervention strategies. Here we aim to provide, through systems analysis, a basis for the characterization of
the genome-scale properties of this pathogen’s versatile metabolic network. To this end, we reconstructed a
genome-scale metabolic network of Pseudomonas aeruginosa PAO1. This reconstruction accounts for 1,056
genes (19% of the genome), 1,030 proteins, and 883 reactions. Flux balance analysis was used to identify key
features of P. aeruginosa metabolism, such as growth yield, under defined conditions and with defined knowl-
edge gaps within the network. BIOLOG substrate oxidation data were used in model expansion, and a
genome-scale transposon knockout set was compared against in silico knockout predictions to validate the
model. Ultimately, this genome-scale model provides a basic modeling framework with which to explore the
metabolism of P. aeruginosa in the context of its environmental and genetic constraints, thereby contributing
to a more thorough understanding of the genotype-phenotype relationships in this resourceful and dangerous
pathogen.

With sequenced genomes now routinely being made avail-
able to the public, detailed annotations and various publicly
available genomic resources have enabled the formation of
genome-scale models of metabolism for a wide variety of or-
ganisms (12, 21, 26, 42, 63, 65). A wealth of data from well-
controlled experiments, coupled with advancements in meth-
ods for computational network analysis, have allowed these
models to aid interrogation of metabolic behavior. In addition,
an iterative process to model development—cycles of in silico
model predictions, experimental (i.e., wet lab) validation, and
subsequent model refinement—has enabled the development
of methods that have contributed to biological discovery, such
as in determination of likely drug targets in Mycobacterium
tuberculosis (3, 26), metabolic engineering of cells for produc-
tion of valuable compounds (5, 32, 34), and development
of novel frameworks for contextualizing high-throughput
“-omics” data sets (15, 24, 64).

Pseudomonas aeruginosa is a ubiquitous gram-negative bac-
terium that is capable of surviving in a broad range of natural

environments, although it is mostly known for its role as an
opportunistic pathogen (40, 60, 72). While P. aeruginosa is
generally found in aerobic environments, it is able to thrive
anoxically and, notably, to denitrify (58). It was also recently
shown that P. aeruginosa can form biofilms under microaerobic
(i.e., very low oxygen) conditions similar to those found in the
lungs of cystic fibrosis (CF) patients (1). These features
strongly contribute to the notable success of P. aeruginosa in
chronically infecting the lungs of CF patients, nearly all of
whom have lifelong P. aeruginosa infections starting at an early
age (49, 70). P. aeruginosa is also a serious pathogen in noso-
comial infections and various acute infections in immunocom-
promised patients, such as severe burns and urinary tract in-
fections (39, 49, 68). Part of the reason for this remarkable
ecological success is thought to be the considerable metabolic
versatility and flexibility of P. aeruginosa (62), which renders
the study of the metabolism of this life-threatening microbe
crucial to the understanding of its pathogenicity and opportu-
nistic nature.

We present a genome-scale metabolic reconstruction of P.
aeruginosa PAO1 (hereafter referred to as PAO1), called in
silico strain iMO1056 following an often-used naming conven-
tion (48). This model accounts for 1,056 genes encoding 1,030
proteins that catalyze 883 reactions (Fig. 1a). Gene-protein-
reaction (GPR) associations are accounted for in the recon-
struction, as well as the stoichiometry and thermodynamically
derived directionality of all included reactions. This recon-
struction process led to the reannotation of several open read-
ing frames (ORFs). The model was tested against high-
throughput substrate utilization experiments (90% matched
the usage of common substrates) and two published sets of
genome-wide knockout data (85% accuracy of essentiality pre-
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dictions). Several additional predictions were made regarding
PAO1 physiology and virulence, and these may be tested sub-
sequently. This genome-scale reconstruction and subsequent
constraint-based modeling enable integration of high-through-
put data to generate novel, testable hypotheses that will assist
in exploring the physiology of PAO1 and assessing its relevance
for pathology.

MATERIALS AND METHODS

Network reconstruction. The reconstruction process is outlined schematically
in Fig. 2, and details are described elsewhere (47). The initial draft of iMO1056
was built from the annotated PAO1 genome available at the Pseudomonas
Genome Database (PseudoCAP; www.pseudomonas.com), supplemented by lit-
erature mining and BLAST searches (69). Biological information databases such
as EXPASY, KEGG, and TCDB were used to link annotated genes to proteins
and proteins to reactions (19, 28, 51), and confidence values were added to
reactions based on the reported confidence values from the PseudoCAP anno-
tation. These GPR associations link genetic data to reactions in the model and
allow the model to predict effects of genetic perturbations on metabolic pheno-
type. GPR associations are defined through Boolean logic, where, for example,
two protein subunits that combine as a complex to perform one enzymatic
function would have an “and” relationship with relation to that reaction, whereas
two isozymes that are each independently capable of catalyzing a reaction would
have an “or” relationship.

Gaps in metabolic pathways necessary for cell growth and production of major
virulence factors were filled through careful literature mining and homology and
context analysis with BLAST at the Pseudomonas Genome Database and NCBI

websites and other online resources (53). Genes whose functions were inferred
via these sources were assigned reaction identification confidence values based
on the guidelines of the Pseudomonas Genome Database genome annotation
effort for protein name confidence values. This concordance ensures that confi-
dence values for key findings in our study are consistent with confidence values
for gene functions in the currently published annotation (69). The PAO1 biomass
reaction (defined as a relative weight of metabolites necessary to synthesize
biomass, as described previously) (66) was assumed to be similar to the published
Escherichia coli biomass reaction, albeit with some minor variations to account
for PAO1-specific data, as described in the supplemental material. Energy effi-
ciency of the electron transport chain in PAO1 was approximated by assuming
that P. aeruginosa grown aerobically would have a similar P/O ratio to published
values for the model prokaryote Escherichia coli (41).

Confidence classes for reactions were assigned based on the PseudoCAP
protein name confidence rating system (69), which rates the confidences of
gene-protein associations in the PAO1 annotation. We extended the system to
rating confidences for reaction associations. There are four levels in this rating
system, as follows: class 1, which accounts for genes whose functions have been
demonstrated experimentally with PAO1; class 2, which accounts for genes
whose functions were inferred via homology with an experimentally character-
ized protein in another organism; class 3, which represents gene-protein associ-
ations based on the presence of conserved amino acid motifs; and class 4, which
accounts for genes with similarity to other genes of unknown function. We
adhered to this rating system for genes whose functions were newly annotated in
this study (see Table 2, “proposed confidence” column), and for genes which
were not newly annotated, we assigned reaction confidences equivalent to the
protein name confidences in the annotation.

Formulation of S matrix. In order to perform flux balance analysis (FBA), a
network must first be represented in the form of a stoichiometric matrix (S

FIG. 1. Reconstruction statistics. (a) Statistics on the P. aeruginosa PAO1 genome and the iMO1056 reconstruction. *, see reference 62; **,
reaction confidences were based on the scale for protein name confidences set out at www.pseudomonas.com. This scale is described in Materials
and Methods. The confidence value for the PAO1 genome is from a version (19 June 2007) of the annotation at www.pseudomonas.com. (b)
Numbers of genes participating in different metabolic processes in the iMO1056 metabolic reconstruction.
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matrix), as shown in Fig. 3a. By convention, rows of the S matrix represent
metabolites and columns represent reactions. Reaction substrates have negative
coefficients in the S matrix, while products have positive coefficients. The S
matrix for a network wholly describes the stoichiometry of reactions in the
network. The S matrix also accounts for transport reactions across the cell
membrane, represented as reactions interconverting intracellular and extracel-
lular compounds, often coupled with hydrolysis of ATP (in the case of ATP-

binding cassette transporters) or exploitation of a chemical gradient (e.g., H�

symport or antiport). Figure 3a, for example, illustrates four transport reactions,
namely, R4, R5, R6, and R7.

FBA. FBA is a computational method that calculates reaction fluxes, their
distribution within a metabolic network, and on this basis, growth yields (Fig. 3)
(33). In order to obtain flux predictions, the metabolic network is assumed to be
at steady state, meaning that concentrations of intracellular metabolites do not

FIG. 2. Schematic of the network reconstruction process for iMO1056. Resources used for the reconstruction are shown on the right, and the
reconstruction process is shown on the left. (1) The P. aeruginosa annotation was used along with online resources to generate an initial
reconstruction of metabolism. (2) Next, computational analysis was used in conjunction with extensive literature mining and online database
searches to identify and fill gaps in metabolism. (3) The model was then validated with data sets from the literature and experimental data
generated as a part of this study. (4) The current model version, iMO1056, is now ready for the next step, in which the model will continually be
improved through cycles of computational hypothesis generation followed by experimental validation.
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vary during the course of a simulation. This steady-state assumption, which
makes FBA results directly comparable to data from cells at a fixed growth rate
(i.e., in exponential phase), is necessary since kinetic parameters are not ac-
counted for in iMO1056.

In many FBA applications, a linear biomass reaction is defined and assumed
to be the objective toward which the flux distribution of a network is optimized.
The biomass reaction represents a weighted ratio of components forming the dry
weight of a cell, as well as hydrolysis of ATP to account for the energy needs
involved in growth and cellular maintenance (66). Optimization for biomass is
justified by the assumption that bacteria have been optimized evolutionarily for
growth, and experimental studies have verified the rationality of this assumption
(16, 55). This optimization step is necessary due to the underdetermined nature
of metabolic networks, as a range of flux profiles are possible for a given network.
FBA optimization is constrained by the stoichiometry of the network and by
upper and lower bounds on reactions, as set by thermodynamic and substrate
uptake constraints. In addition, conditional constraints, such as gene knockouts
and alternative gene regulation, can be placed on the system to simulate exper-
imental conditions (22, 59).

To perform FBA, the flux of the biomass reaction is maximized given the
steady-state condition, as follows: S · v � 0, where S is the S matrix representing
the network (Fig. 3a) and v is the vector of all fluxes in the network (Fig. 3b, top
panel). Ultimately, FBA yields a predicted optimal growth yield and a flux
distribution through the system that will support this optimal growth (Fig. 3b,
bottom panel). See the supplemental material for a discussion of constraints used
in FBA simulations in this study.

Biolog experiments. PAO1 was tested for the ability to utilize various carbon
sources, using Biolog GN2 microplates (Biolog Inc., Hayward, CA). All proce-
dures were performed as indicated by the manufacturer. Bacteria were grown
overnight at 28°C on a Biolog universal growth agar plate. Samples were swabbed
from the surface of the plate and suspended in GN inoculating fluid. Each well
of the microplate was inoculated with 150 �l of bacterial suspension, and the
plate was incubated at 28°C for 24 h. Subsequently, the microplate was read by
a microplate reader, and the results were analyzed with MicroLog3 4.20 software.

The assay performed with the Biolog plate is a measurement of the reduction
of tetrazolium dye after 24 h, indicating whether P. aeruginosa has been respiring
actively during that period. Active respiration in minimal medium indicates
utilization of the sole carbon source provided.

Technical computing methods. FBA optimizations were performed on a Dell
computer with 2 GB of RAM and a 1.8-GHz Intel Centrino processor linked
to a dedicated database server with Simpheny software (Genomatica, Inc.).
Transposon knockout data were handled in Excel (Microsoft Corp.), and
statistical analysis of transposon data was performed in Matlab R2006a
(Mathworks, Inc.).

RESULTS

Metabolic reconstruction of P. aeruginosa PAO1. We gen-
erated a constraint-based, genome-scale representation of
PAO1’s metabolism. The reconstruction accounts for 1,056
genes involved in 883 metabolic reactions (Fig. 1a), including
anabolic pathways necessary for the synthesis of all major cel-
lular biomass components from basic metabolic precursors
(see Fig. 4a for a complete network map). As described in
Materials and Methods, the reconstruction process included an
initial model-building stage based heavily on public databases
and literature, a gap-filling stage in which missing steps in
essential metabolic pathways were refined, and finally, an ex-
tension and validation stage that included expansion of the
model by comparison with Biolog substrate utilization data,
comparison of in silico predictions with physiological data, and
validation against two experimentally determined sets of likely
essential genes.

Aside from accounting for all major pathways necessary for
growth of P. aeruginosa, an effort was made to reconstruct
some of the major pathways associated with virulence for this
bacterium. The metabolism of P. aeruginosa is involved in a
number of virulence processes, such as quorum sensing (11,
23), expression of lipopolysaccharide and rhamnolipids (61),
and notoriously, the switch from the nonmucoid to mucoid
form and associated production of the exopolysaccharide algi-
nate (46). Table 1 lists the virulence-associated pathways ac-
counted for in iMO1056 and some relevant features of these
pathways.

Systematic refinement of genome annotation. A major value
of a manual model-building effort is the careful revision of the
current genome annotation based on literature evidence en-
countered during the model-building process, BLAST
searches, and gap closures. Annotation refinements represent
(i) knowledge that was in the literature but was overlooked in
the original annotation and (ii) new hypotheses that came
directly from the model-building process. Specifically, the iden-

FIG. 3. FBA. (a) The conversion of a metabolic system into an S matrix is shown for a simple prototype. Columns represent reactions, and rows
represent compounds. Reaction stoichiometries are represented with negative coefficients for substrates and positive coefficients for products of
a given reaction. (b) (Top) Standard form of an FBA problem. Flux through the objective reaction (v5) is maximized subject to thermodynamic,
stoichiometric, and uptake constraints, as follows: reaction fluxes (vj) must lie between lower and upper bounds (lb and ub), metabolite
concentrations are fixed over time (S · v � 0), and the flux of a limiting carbon source (v4) is set to some uptake value. (Bottom) Flux values
calculated by FBA for the prototype network are represented by arrows.
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tification of network gaps (instances where a metabolite can be
consumed but not produced or vice versa) using FBA optimi-
zation pinpointed reactions that are necessary for a pathway to
function but that are peripheral to the pathway and thus were
overlooked during historical pathway characterization. Table 2
provides a list of recommended annotation refinements for
PAO1 that arose from the reconstruction process. In some
cases, such as the annotation refinements for the nuh gene
(Table 2), the function of the gene was not changed, but rather,
specific reactions which are important for certain cellular pro-
cesses were assigned to already annotated genes.

The first level of annotation refinement is the assignment of
a specific function to a previously uncharacterized gene based
on literature evidence or a BLAST search. An example of this
in iMO1056 is the gene mtnP (PA3004), which was annotated
in PseudoCAP as a “probable nucleoside phosphorylase” but
was subsequently found in the literature to have the specific
function of a 5�-methylthioadenosine phosphorylase (Fig. 4b)
(57). The mtnP gene was first identified (57) through detailed
sequence analysis, and then its function was confirmed (57) by
knocking out mtnP in a �metZ strain of P. aeruginosa and
observing a loss of growth on minimal medium supplemented
with methionine, homocysteine, or methylthioadenosine (57).
mtnP is necessary for the function of the methionine salvage
pathway in P. aeruginosa and was previously characterized in
the literature but not in the P. aeruginosa annotation, and its
inclusion in iMO1056 is an example of how the manual recon-

struction process can benefit annotation efforts in a way that
would not be immediately obvious from automatic model
building. In this case, the reconstruction process led us to
investigate the methionine salvage cycle and to uncover a re-
action that was necessary for the pathway to function but which
would have been difficult to pinpoint without a rational model-
building approach.

The next level of gene annotation refinement is the assign-
ment of a new function based on gap analysis. This type of
annotation refinement occurs when a gap in a pathway renders
model growth infeasible, and the missing reaction is subse-
quently identified by literature mining or a homology search.
For example, the previously uncharacterized conserved hypo-
thetical protein PA4457 was identified as an arabinose-5-phos-
phate isomerase gene (kdsD), which was lacking in the original
PAO1 annotation (Fig. 4c). Gap analysis revealed a need for
the production of D-arabinose-5-phosphate in the network to
enable synthesis of 3-deoxy-D-manno-2-octulosonate (KDO).
KDO links the backbone of the lipid A moiety to the core
oligosaccharide of lipopolysaccharide and is essential for
growth of PAO1 (20). A series of BLAST searches in the
nonredundant NCBI database revealed that PA4457 (thus far
annotated as a gene coding for a hypothetical protein) had
79% identity over a length of 326 amino acids to the protein
KdsD carried by Pseudomonas fluorescens Pf-5 (score, 501; E
value, 3 � 10�130). KdsD is an arabinose-5-phosphate isomer-
ase, the enzyme that catalyzes the interconversion of D-arabi-

FIG. 4. Reannotation processes. (a) Full network map of iMO1056. Metabolic processes are grouped together, and an effort was made to link
pathways to their major carbon donors and sinks in central metabolism, although many metabolites occupy two or more locations on the map. All
internal boxes are meant to highlight metabolic processes rather than to denote cellular localizations. The double line surrounding the map
represents the cell barrier. (b, c, and d) Several types of reannotation that went into iMO1056. Large gray arrows denote the reannotation process:
initial annotation statuses are shown before the arrows, and reannotated gene functions are shown after the arrows. The location of each newly
annotated gene is highlighted on the map. (b) PA3004 was functionally identified by literature mining. (c) A gap in the KDO synthesis pathway
was identified, and PA4457 was found by a BLAST search to fulfill the missing function. (d) NAD initially could not be synthesized anaerobically
in iMO1056, since O2 was required for NAD synthesis. However, literature mining revealed a putative alternate stoichiometry for the L-aspartate
oxidase reaction (ASPO8) that does not require oxygen.

TABLE 1. Virulence factors in P. aeruginosaa

Virulence factor No. of
reactions Proteins involved Major metabolic precursors

Rhamnolipids 5 RhlA, RhlB, RhlC, PhaC1, PhaC2 dtdpddm, acyl-ACP
Alginate 6 Alg44, Alg8, AlgE, AlgF, AlgG, AlgI, AlgJ, AlgK,

AlgL, AlgX
GDP-D-mannose, acetyl-ACP

Phenazines 7 PhzA1, PhzA2, PhzB1, PhzB2, PhzC1, PhzC2,
PhzD1, PhzD2, PhzE1, PhzE2, PhzF1, PhzF2,
PhzG1, PhzG2, PhzH, PhzM, PhzS

Chorismate

PQS 5 KynA, KynB, KynU, PqsA, PqsB, PqsC, PqsD, PqsH Tryptophan, 3-oxodecanoyl-ACP
AHL 5 Las , PvdQ, Rhl SAM, acy -ACP
Lipopolysaccharide components

Lipid A 12 HtrB, HtrB2, Kds, KdsA, KdsB, KdtA, LpxA, LpxB,
LpxC, LpxD, LpxK

ara5p, pep, uacgam, acyl-ACP

Core oligosaccharide 14 HldD, RfaD, HldE, GmhB, GmnA, RmlD, WaaC,
WaaF, WaaG, WaaP, WapP

s7p, UDP-glucose, dtdpddm, L-alanine

A band O antigen 4 WbpL, WbpX, WbpY, WbpZ uacgam, GDP-D-rhamnose
B band O antigen 10 WbpA, WbpB, WbpC, WbpD, WbpE, WbpH,

WbpI, WbpJ, WbpK, WbpL, WbpM
uacgam, acetyl-ACP

Other 2 WzX, WzY, WzZ Assembles O antigen and core

a Virulence pathways represented in iMO1056. uacgam, UDP-N-acetyl-D-glucosamine; ara5p, D-arabinose 5-phosphate; pep, phosphoenolpyruvate; s7p, sedohep-
tulose 7-phosphate; dtdpddm, dtdp-4-oxo-L-rhamnose; PQS, 2-heptyl-3-hydroxy-4-quinolone; AHL, acetylated homoserine lactone; SAM, S-adenosyl-L-methionine.
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nose 5-phosphate and D-ribulose 5-phosphate (38). This rean-
notation and its subsequent incorporation into the model
enabled iMO1056 to grow in silico.

Gap analysis also enables the reconciliation of conflicting
knowledge in the literature. An earlier version of the PAO1
reconstruction was unable to produce biomass in the absence
of oxygen. It was discovered through gap analysis that the
inability of iMO1056 to grow without oxygen was due to the
oxygen consumption of the enzyme L-aspartate oxidase
(NadB), which catalyzes the first step in the production of
NAD. Literature mining revealed that while NadB has a strict
requirement for O2 when assayed in vitro, it has been sug-
gested that another electron acceptor might suffice in the ab-
sence of elemental oxygen in vivo (17). In the network recon-
struction, we included an alternate reaction stoichiometry for
NadB that had been suggested previously (17), and we thus
eliminated the oxygen requirement for growth (Fig. 4d). De-
spite this literature analysis, however, it is noteworthy that
knocking out nadB is not lethal for P. aeruginosa in vivo (10).
This result suggests that another pathway for NAD biosynthe-
sis likely exists. More detailed biochemical study is necessary to
determine if there is another anaerobic path for NAD synthe-
sis in PAO1 and whether NadB can truly function in the ab-
sence of oxygen.

Gap analysis was also used to refine the stoichiometry and
directionality of several reactions that were incorrect or vague
in online databases. For instance, the reaction catalyzed by the
electron transport enzyme NADPH-quinone oxidoreductase
(PA4975; EC 1.6.5.5) was found upon analysis of free ATP
production to be necessarily irreversible, despite its being
listed as reversible in the EXPASY database (19). Such net-
work refinements would be difficult to systematize without a
genome-scale model that accounts for the interdependency of
reactions and metabolites.

Growth predictions. The in silico biomass yield of iMO1056
on glucose minimal medium under steady-state (continuous
culture) conditions was calculated using FBA. In silico con-
straints used for minimal medium conditions are outlined in
the supplemental material. The maximum specific growth rate
was determined to be 1.048 h�1, with a specific glucose uptake
rate of 10 mmol Glc · g dry weight�1 · h�1, giving an in silico
biomass yield of 0.1048 g dry weight · (mmol Glc)�1. This value
for in silico biomass yield falls within the range of experimen-
tally determined values for biomass yield for P. aeruginosa
under similar conditions, which were reported previously (67)
as 0.094, 0.085, and 0.118 g dry weight · (mmol Glc)�1 at
temperatures of 30°C, 38°C, and 41°C, respectively. This value
for in silico biomass yield is also within 20% of the maximum
biomass yield determined experimentally for P. aeruginosa
ATCC 9027 under aerobic growth conditions in another study
[0.088 g dry weight · (mmol Glc)�1] (7).

P. aeruginosa is renowned for its ability to survive by deni-
trification in anaerobic environments (13, 58). The pathway for
denitrification of nitrate was included in the reconstruction,
and iMO1056 is able to grow anaerobically, with an in silico
biomass yield of 0.0846 g dry weight · (mmol Glc)�1, when
nitrate is provided under glucose limitation. This in silico bio-
mass yield is within 25% of an experimental value for maxi-
mum biomass yield reported previously for P. aeruginosa
ATCC 9027 under anaerobic growth conditions [0.067 g dryPA
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weight · (mmol Glc)�1] (7). The ratio of maximum anaerobic
yield to maximum aerobic yield reported previously (7) is 0.76,
which differs from the ratio obtained in silico (0.81) by only
6%, indicating a good match between in silico versus in vivo
(experimental) ratios of anaerobic to aerobic yield.

Phenotyping data. A Biolog study was performed for P.
aeruginosa by cultivating PAO1 in minimal medium supple-
mented with various carbon sources (as described in Materials
and Methods). Of the 95 carbon sources tested, 30 could be
compared directly to in silico growth of iMO1056 (by assuming
that substrate utilization indicates growth, which is usually but
not always true). Disagreements between the Biolog data and
the in silico growth simulations were used as hypotheses for
refining the network reconstruction. The remaining 65 carbon
sources included 15 that were present as intracellular metab-
olites in iMO1056 but for which there were no transporters
assigned and 50 that are not currently accounted for in the
iMO1056 reconstruction. Of these, 14 showed a growth phe-
notype in the Biolog data, indicating that incorporation of
these compounds into the model might be a future step in
iMO1056 model expansion.

Computational experiments were performed to determine
the growth of iMO1056 on the 30 Biolog carbon sources that
were directly testable with iMO1056 (Fig. 5a). The in silico
growth experiments were performed in Simpheny by using
FBA, as described in Materials and Methods. Disagreements
between Biolog substrate utilization data and in silico growth
simulations were investigated through gap analysis and litera-
ture mining, and these discrepancies were rectified where pos-
sible. In one case (L-leucine), the Biolog data were unclear
about the growth of PAO1, so that data point in Fig. 5a is
shaded lighter than those for the other carbon sources but is
still considered to show a growth phenotype. After completion
of pathways for substrates which initially conflicted with the
Biolog data set, PAO1 viability matched iMO1056 viability
under 27 of 30 conditions (Fig. 5a). This 90% match indicates
that the core metabolism and various catabolic pathways of
PAO1 were sufficiently reconstructed in iMO1056 for the
model to properly predict catabolism of a variety of common
substrates, including many amino acids and several common
sugars.

The 15 Biolog carbon sources that were intracellular metab-
olites but did not have transporters in iMO1056 gave in silico
no-growth phenotypes due to the inability of iMO1056 to up-
take these compounds from the environment. We evaluated
the cause of these in silico phenotypes by adding a temporary
transport reaction to iMO1056 for each carbon source in turn
and assessing the new transporter-augmented models for in
silico growth. Figure 5b indicates the results of this study,
where numbers in the table represent the numbers of carbon
compounds out of 15 total that fall into each of four possible
permutations (growth versus nongrowth and in silico versus
Biolog data). The 10 carbon sources on which PAO1 did not
grow in the Biolog study (and thus matched the in silico results
for iMO1056) were grouped into the “correctly lacks trans-
porter” and “correctly lacks either transporter or pathway”
categories, depending on whether the transporter-augmented
model for that carbon source was able to grow (Fig. 5b). The
five carbon sources on which PAO1 did grow in the Biolog
study (which thus contradicted the in silico results for

FIG. 5. Biolog validation. The results of a Biolog study of P. aerugi-
nosa viability on different carbon sources in minimal medium were
compared with in silico viability predictions for iMO1056 obtained via
FBA. (a) Thirty-one carbon sources tested in Biolog were directly
comparable with in silico predictions. The results of this comparison
are shown here. An “X” indicates no growth, while shaded boxes in the
Biolog column indicate that growth occurred. Lightly shaded boxes in
the Biolog column indicate weak results that are close to the sensor
threshold for growth and were included as a growth phenotype for
analyses. (b) Fifteen carbon sources tested in Biolog are intracellular
compounds in iMO1056 but did not sustain in silico growth since they
lacked appropriate transporters. The number of carbon sources from
this group belonging to each permutation of Biolog growth (yes or no)
and in silico growth (yes or no) is represented in the table, as well as
a brief description of what each combination of Biolog growth and in
silico growth indicates about iMO1056 regarding the set of carbon
sources.
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iMO1056) were grouped into the similar categories “incor-
rectly lacks transporter” and “incorrectly lacks pathway and
transporter,” indicating the likely cause of the mismatch be-
tween Biolog data and in silico simulation. These categoriza-
tions will help to focus future annotation refinement efforts.
The full list of Biolog results can be found in the supplemental
material.

Gene essentiality prediction and validation. A list of genes
predicted to be essential for in silico growth of iMO1056 was
compiled and compared with a set of in vivo essential genes
(i.e., genes that are reported to be required for growth) from
the literature. The set of in vivo essential genes encompasses
genes deemed essential in both of two independent genome-
scale transposon mutant studies of PAO1 (25, 35). This over-
lapping data set was chosen because it has a higher confidence
value for gene essentiality than the candidate essentials from
either transposon study individually, since the inclusion of two
transposon studies increases coverage of the PAO1 genome
and thus reduces the number of genes erroneously labeled
essential. The set of in vivo essentials includes all genes in the
PAO1 genome that were not knocked out in either of the two
transposon studies. In silico gene essentiality predictions for
iMO1056 were calculated in the Simpheny platform via FBA as
previously described (27).

Genes in the in vivo essential set but not in the iMO1056
reconstruction were assumed to be involved either in nonmeta-
bolic functions or in metabolic functions peripheral to central
metabolism and were thus not included in our essentiality
analysis. The total accuracy of essentiality predictions was 85%
(Fig. 6a). This accuracy is comparable to the 94% accuracy
achieved in a recent reconstruction of Bacillus subtilis, which
also used a genome-scale knockout set for model validation
(42). Of genes in the iMO1056 reconstruction, in silico essen-
tiality predictions matched in vivo essentiality for 41% of in
vivo essential genes and 91% of in vivo nonessential genes (Fig.
6a). Although the total accuracy of predictions is significant,
these discrepancies (particularly in matching in vivo essential-
ity) deserve further discussion (as follows) and can serve as a
collection of hypotheses that can subsequently be tested.

First, it is informative to note the functions of genes that
mismatched between the in silico and in vivo essentiality pre-
dictions. Figure 6b, c, d, and e show the functional distribution
of genes in iMO1056 that are nonessential in vivo and in silico
(true-negative results), essential in vivo and in silico (true-
positive results), essential in silico but not in vivo (false-posi-
tive results), and essential in vivo but not in silico (false-neg-
ative results), respectively. A simple analysis of these figures
can explain much of the discrepancy. For instance, among the

FIG. 6. Gene essentiality comparison. FBA-derived (in silico) iMO1056 essentiality predictions were compared with an experimentally
generated (in vivo) candidate essential gene set for P. aeruginosa. (a) Genes in iMO1056 were broken into the following four groups: true-positive
(essential in vivo and in silico), true-negative (nonessential in vivo and in silico), false-positive (nonessential in vivo but essential in silico), and
false-negative (essential in vivo but nonessential in silico) groups. The specific pathways represented in true-negative (b), true-positive (c),
false-positive (d), and false-negative (e) groups are indicated. Numbers on pie charts indicate numbers of genes belonging to each group.
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false-negative set, 10 genes encode tRNA synthetases. These
synthetases catalyze the formation of aminoacyl-tRNAs in
preparation for protein synthesis. These reactions were in-
cluded in iMO1056 for the sake of completeness, but the
tRNAs represent gaps in the model and so are not truly in-
volved in any part of model function (although the tRNAs are
gaps in the sense that they cannot participate in metabolic
pathways in the iMO1056 model, and they were included in the
reconstruction because they represent genes with known enzy-
matic functions). Considering these 10 reactions to be non-
metabolic and removing them from iMO1056 would improve
the match between the in silico essential gene set and the set of
in vivo essential genes in iMO1056 from 41% to 44%.

Vitamin and cofactor synthesis genes make up the largest
number of genes in both the false-positive and false-negative
categories (Fig. 6d and e), and they make up the second largest
number of genes in the true-positive category as well (Fig. 6c).
The high discrepancy between in silico and in vivo predictions
of essentiality for vitamin and cofactor synthesis genes might
be due in part to uncertainty about the vitamin and cofactor
content of the LB medium on which the transposon mutants
were grown. Since only trace amounts of vitamins are required
for cell survival, it is possible that some essential vitamins were
present at low concentrations in the LB medium but were not
accounted for in our in silico LB medium. This is especially
relevant considering previous analyses of yeast extract compo-
sition, which showed a high variance in vitamin concentration
between extracts from different manufacturers (42; see the
supplemental material). Furthermore, since the iMO1056 bio-
mass reaction was based on that of E. coli, it is possible that
nutritional differences between the two bacteria contribute to
errant predictions about PAO1 vitamin and cofactor essenti-
ality. It is therefore likely that growth experiments on better-
defined media will be particularly helpful in elucidating the
true essentiality of genes in vitamin and cofactor synthesis
pathways.

Second, it is important that the in vivo gene essentiality
predictions from the transposon mutant sets are not com-
pletely accurate in assessing gene essentiality. An example of a
gene that was predicted to be essential in vivo despite in ac-
tuality being a nonessential gene is PA0555, encoding the en-
zyme fructose-1,6-biphosphate aldolase (FBPA). This gene
was classified as essential in vivo because transposon mutants
with a disrupted FBPA gene were not identified in either
PAO1 transposon study, but previous literature shows that the
FBPA knockout is not lethal for PAO1 (2). FBPA was cor-
rectly predicted to be nonessential in the in silico data set.

The in vivo PAO1 transposon studies used in this analysis
discuss the possibility of errors in their candidate essential
gene sets, and it was suggested in one of the studies that the
number of candidate essential genes in that study (678 total)
may overestimate the true number of essential genes by 40 to
50% (25). This overestimate prediction was based on an anal-
ysis of the number of ORFs that would likely escape transpo-
son mutagenesis, assuming that all base pairs have equal sus-
ceptibility to transposon insertion, including essential genes.
Due to its higher coverage of the PAO1 genome, the set of
overlapping essentials from the two PAO1 studies should have
a higher confidence than that for candidate essentials from
either study alone, but the combined transposon set yields an

in vivo candidate essential set that is reduced in size by only 34
genes, which does not nearly approximate the 40 to 50% dis-
crepancy suggested (25). Hence, some of the mismatches be-
tween the in vivo essentials and the in silico essentials are likely
due to overestimation of gene essentiality in the in vivo studies,
which would translate into false-negative results in the in silico
predictions of essentiality.

Additionally, in one of the transposon studies used in our
analysis (35), transposons were reported to likely disrupt genes
downstream within an operon, but in the other study (25), an
outward-facing neomycin phosphotransferase promoter was
inserted as part of the transposon in an attempt to reduce the
disruption of downstream genes. It is somewhat unclear from
the study, however, how successful the neomycin phospho-
transferase promoter actually was in preventing disruption of
downstream genes. We therefore undertook an analysis of
whether genes downstream of transposon insertions are gen-
erally disrupted in vivo, a phenomenon that would cause some
nonessential genes to be classified as essential in vivo due to
transposons in those genes disrupting downstream essential
genes. In order to investigate this phenomenon, we performed
a statistical analysis of the number of in vivo essential genes
�1,000 bp downstream of genes classified as giving false-neg-
ative results. Consistent with the reports for the two transpo-
son studies, we determined that the false-negative results were
significantly more likely to have essential genes downstream of
them than a set of random genes from the in vivo study that
reported polar disruption of downstream genes (indicating
possible disruption of downstream essential genes by trans-
posons) (35) but that false-negative results were not more
likely to have essential genes downstream of them than a set of
random genes from the in vivo study with the neomycin phos-
photransferase promoter (indicating a lack of disruption of
downstream essential genes by transposons) (25). The result
for the in vivo study reporting polar disruption of downstream
genes (35) might have been due to the study’s much lower
coverage of the genome than that of the other study (23%
versus 88% of ORFs disrupted). Regardless, this analysis sug-
gests that in a genome-scale transposon study, an outward-
facing neomycin phosphotransferase promoter is effective in
preventing disruption of downstream genes (see the supple-
mental material for more details).

DISCUSSION

We present iMO1056, a genome-scale reconstruction of P.
aeruginosa PAO1 that accounts for 1,056 genes encoding 1,030
proteins that are involved in 883 reactions. Specifically recon-
structed pathways included those necessary for growth and for
production of common virulence factors, including alginate,
rhamnolipids, phenazines, and quorum-sensing molecules.
iMO1056 was validated with experimental growth rate data
from literature, Biolog viability data on multiple carbon
sources, and a genome-scale gene essentiality set derived from
two independent transposon mutant studies of P. aeruginosa.
Model predictions matched well with experimental data in
many cases.

Building a genome-scale reconstruction of PAO1 offered
insights that would have been difficult to obtain through any
other means, including evidence for annotation refinements,
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the ability to quantitatively predict growth yields and secretion
rates under various conditions, and a potential way to probe
metabolic stresses incurred by the production of various viru-
lence factors that may be explored in future studies. During the
model-building process, we were forced to approach each met-
abolic pathway quantitatively and comprehensively, so previ-
ous gaps in knowledge were highlighted and investigated in a
rational manner. This process of gap analysis involves coupling
in silico growth simulations with bioinformatic searches and
literature mining to fill holes in otherwise known pathways and
offers a unique tool for identifying areas of metabolism that
require further elucidation. Through gap analysis of P. aerugi-
nosa metabolism, we were able to refine the annotation of a
number of genes with respect to their function, directionality,
or stoichiometry. Some of these changes are highlighted in
Table 2. These annotation refinements represent many crucial
metabolic functions of P. aeruginosa, and without a systematic
network-level approach to guide our analysis, it would have
been difficult to highlight these weak points in current knowl-
edge.

As in any genome-scale annotation effort, the network re-
construction process for P. aeruginosa will require continued
work in the future. Mismatches between in vivo and in silico
essential genes have highlighted metabolic regions of uncer-
tainty in current knowledge, and these discrepancies still re-
quire more work to be explained adequately. In addition, sev-
eral pathways in the model remain incomplete due to a lack of
available knowledge. These gaps include synthesis of cofactors
(e.g., cobalamin and thiamine) and, notably, the entire fatty
acid 	-oxidation pathway, which exists in but has not been
characterized extensively for pseudomonads, to our knowledge
(52). The Biolog data also indicated some pathways that
should be investigated further in the future, such as substrates
that PAO1 utilized but which are not in iMO1056 or for which
iMO1056 has no membrane transporter. Furthermore, some
pathways were not included in the model despite having been
studied in the literature, simply because they were peripheral
to the main processes of interest in this study (growth and
expression of virulence traits). Thus, for instance, pathways for
degrading aromatic compounds and for handling xenobiotics
were generally not included in the model, and these offer areas
for model expansion in the future. Specific validation involving
controlled growth experiments with P. aeruginosa will also be
informative, and coupling wet lab and in silico experiments will
lend greater insight into both specific functions and global
properties of P. aeruginosa metabolism.

Additionally, a genome-scale reconstruction of P. aeruginosa
metabolism enables the interrogation of several otherwise dif-
ficult research questions. For instance, it would be informative
to compare the P. aeruginosa metabolic network with meta-
bolic networks of other related but nonpathogenic species.
This comparison would allow probing of properties such as
pathway redundancy and growth burden of key virulence path-
ways and would offer insight into how these system-level prop-
erties might affect pathogenicity. Such a genome-scale network
analysis between a pathogen and a nonpathogen has never
been done, to our knowledge, and could provide significant
insight into the mechanisms for disease and possible therapeu-
tic targets. Another question of great interest involves the
enumeration of selective pressures on P. aeruginosa in the CF

lung environment. For example, P. aeruginosa samples ob-
tained from sputum during the life of a CF patient have shown
gene mutations and significant alterations in gene expression
over time (4, 60). Notably, convergent evolution toward a loss
of virulence factors by P. aeruginosa strains taken from multi-
ple CF patients has been demonstrated, suggesting that viru-
lence traits might be selected against once a stable infection
has been achieved (60). The effect of the loss of the lasR gene,
a master regulator of hundreds of virulence-related genes
through the quorum-sensing system in P. aeruginosa, has also
been evaluated (8, 56). It was shown that loss of the lasR gene
conferred a growth advantage both to strains extracted from
the lungs of CF patients and from strains that emerged by
selection on rich medium, indicating that optimization of yield
could act as a metabolic objective even in the CF lung (8). This
result is counterintuitive, as much of the success of P. aerugi-
nosa in chronic lung infections seems to lie in its ability to
adopt a slow-growth phenotype, which would suggest that op-
timization of yield is perhaps not a strong selective pressure in
that environment (6). Regardless of whether slow-growing mu-
tants of P. aeruginosa in the CF lung environment are actually
optimized for yield, these studies indicate that metabolic se-
lective pressure might be a factor in the evolution of chronic
CF strains. With the integration of simple regulatory rules into
iMO1056, it will be possible to model different hypotheses
about selective pressures in the lung and to analyze the causes
for these selective processes.

In addition to the pathogenicity analysis and evolutionary
studies outlined above, iMO1056 can serve as a valuable tool in
interpreting and informing genome-scale transcriptomic stud-
ies of PAO1. Microarray analysis has attracted sizeable interest
in the P. aeruginosa community and was recently used to de-
termine genome-level expression changes under various
stresses and conditions (13, 36, 71). Enabling a survey of sys-
tem-level traits of an organism in a relatively unbiased way,
microarrays are a crucial element in postgenomic analyses of
cell phenotype. While gene expression data cannot be linked
directly with metabolic fluxes, past studies have used gene
expression data to indicate the regulation of whole pathways in
metabolism, thus indicating global phenotypes (9, 12). Further-
more, metabolic reconstructions have been used to predict
which genes in a network are likely to be coregulated, and
overlaying expression data on a metabolic reconstruction can
inform interpretation of microarrays within the context of a
genome-scale model (9, 43).

P. aeruginosa is an organism of much interest for its various
roles as an opportunistic pathogen (60). From chronic lifelong
infections of the lungs of CF patients to acute, highly deadly
infections of severe wounds in burn victims, the robustness and
environmental diversity of P. aeruginosa are testament to its
remarkable natural metabolic agility. We chose to focus our
reconstruction effort on P. aeruginosa PAO1 since it is the most
studied P. aeruginosa strain and is also the best-characterized
strain, but with minor modifications to iMO1056 the model can
be tailored to describe similar strains, such as the more virulent
P. aeruginosa PA14 (62, 69). A genome-scale metabolic model
represents a potentially enormous tool for rational drug design
and prediction of cell phenotypes and, in conjunction with
regulatory information, can serve in modeling disease pro-
cesses and engineering therapeutic responses. For P. aerugi-
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nosa, a bacterium whose metabolic diversity is a major deter-
minant of virulence, a metabolic network reconstruction will
serve as an essential component in a multifaceted and effective
response to disease.
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